首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   80篇
  2023年   2篇
  2022年   2篇
  2021年   19篇
  2020年   3篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   16篇
  2015年   23篇
  2014年   27篇
  2013年   33篇
  2012年   30篇
  2011年   32篇
  2010年   24篇
  2009年   16篇
  2008年   26篇
  2007年   36篇
  2006年   24篇
  2005年   29篇
  2004年   32篇
  2003年   25篇
  2002年   25篇
  2001年   21篇
  2000年   14篇
  1999年   12篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   15篇
  1987年   8篇
  1986年   10篇
  1985年   11篇
  1984年   6篇
  1983年   3篇
  1981年   4篇
  1978年   2篇
  1950年   1篇
  1946年   1篇
  1940年   1篇
  1939年   2篇
  1938年   3篇
  1937年   1篇
  1936年   2篇
排序方式: 共有658条查询结果,搜索用时 625 毫秒
51.
52.
BackgroundHeart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis.ConclusionsThe metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients.

Clinical Trial Registration

ClinicalTrials.gov NCT02052804  相似文献   
53.
Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in clinical settings. BAYESIL is accessible at http://www.bayesil.ca.  相似文献   
54.
Herein, we present the solution‐state NMR studies on dextromethorphan ( 1 ) under both isotropic and anisotropic conditions. From the measurement of 22 residual dipolar couplings using a stretched polystyrene gel (PS), we show that accurate and detailed structural information is readily determined including the relative stereochemical assignments of chiral centers, validation of diastereomer configuration, and the stereospecific assignment of the seven pairs of prochiral protons. This utility of PS gels is thus showcased to obtain rapid, accurate conformational, and relative configuration information in this important class of compounds without recourse to X‐ray analysis. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
55.
Constructed treatment wetlands have served the City of Columbia, MO, for fourteen years. Four free water surface wetland units in series, comprised of 23 cells, are an addition to the activated sludge wastewater treatment plant, for the purpose of added biochemical oxygen demand (BOD) and total suspended solids (TSS) control. The system operates year-round, and supplies water to the Eagle Bluffs Conservation Area for wetland maintenance. The cattail wetlands processed an average of 57,000 m3/d, at a water depth of 20 cm. The resulting detention time was approximately 2 days, and the hydraulic loading was 13 cm/d. Water temperatures were warm leaving the treatment plant and in the wetlands in winter, because of the short detention. The period of record average carbonaceous biochemical oxygen demand (CBOD) leaving the wetlands was 5.0 mg/L, and the TSS was 14.7 mg/L. Dissolved oxygen was depressed in summer, likely because of the high sediment demand. Nutrient concentrations were only minimally reduced, total nitrogen (TN) by 22% and total phosphorus (TP) by 6%. However, load reductions were maximal, 98 t/yr for nitrogen, and 3.6 t/yr for phosphorus. Fecal coliforms were reduced by 98%, and E. coli by 95%. First order rate coefficients were high for CBOD (64 m/yr), nitrate (61 m/yr) and organic nitrogen (42 m/yr), but relatively low for ammonia (8 m/yr) and phosphorus (5.7 m/yr). Nitrogen removal was strongly affected by vegetative uptake. Sediment accretion in the wetland inlets was substantial, at 1.6 cm/yr in the inlets to the upstream wetland units. Muskrats caused vegetation damage, and waterfowl use was high in winter, causing TSS excursions.  相似文献   
56.
57.
58.
Our objective was to evaluate methods for identifying cattle with high concentrations of Escherichia coli O157 in their feces. In two experiments, feces were collected from cattle orally inoculated with nalidixic acid (Nal)-resistant E. coli O157, and direct plating of diluted feces on sorbitol MacConkey agar with cefixime and potassium tellurite (CT-SMAC) containing Nal was considered the gold standard (GS) method. In experiment 1, methods evaluated were preenrichment direct streak, immunomagnetic separation with most probable number (MPN), and postenrichment direct streak with MPN, all using CT-SMAC. The mean concentration of Nal-resistant E. coli O157 in samples (n = 59) by use of the GS was 3.6 log10 CFU/g. The preenrichment streak detected >3.0 log10 CFU/g samples with a 74.4% sensitivity and 68.8% specificity. Postenrichment direct streak-MPN and immunomagnetic separation-MPN concentrations were correlated significantly with GS concentrations (r = 0.53 and r = 0.39, respectively). In experiment 2 (480 samples), pre- and postenrichment direct streaking performed in triplicate and spiral plating on CT-SMAC were evaluated. For preenrichment streaks, sensitivity was 79.7% and specificity was 96.7% for detecting >3.0 log10 CFU/g when the criterion was positive cultures on at least two plates. For spiral plating at that concentration, sensitivity and specificity were 83.9% and 56.3%, respectively. Postenrichment streaking performed relatively poorly. Triplicate preenrichment streaks of 1:10-diluted feces on CT-SMAC may be useful for identifying cattle shedding high concentrations of E. coli O157. Estimates of sensitivity and specificity enable appropriate application of methods and interpretation of results and may enhance applied research, surveillance, and risk assessments.  相似文献   
59.
Intramyocellular triacylglycerol (IMTG) has been suggested to represent an important substrate source during exercise. In the present study, IMTG utilization during exercise is assessed through the use of various methodologies. In addition, we identified differences in the use of intramyocellular lipids deposited in the immediate subsarcolemmal (SS) area and those stored in the more central region of the fiber. Contemporary stable isotope technology was applied in combination with muscle tissue sampling before and immediately after 3 h of moderate-intensity cycling exercise (62 +/- 2% Vo(2 max)) in eight well-trained male cyclists. Continuous infusions with [U-13C]palmitate and [6,6-(2)H2]glucose were applied to quantify plasma free fatty acid (FFA) and glucose oxidation rates and to estimate whole body IMTG and glycogen use. Both immunohistochemical analyses of oil red O (ORO)-stained muscle cross sections and biochemical triacylglycerol (TG) extraction were performed to assess muscle lipid content. During exercise, plasma FFA, muscle (and/or lipoprotein)-derived TG, plasma glucose, and muscle glycogen oxidation contributed 24 +/- 2, 22 +/- 3, 11 +/- 1, and 43 +/- 3% to total energy expenditure, respectively. In accordance, a significant net decline in muscle lipid content was observed following exercise as assessed by ORO staining (67 +/- 8%) and biochemical TG extraction (49 +/- 8%), and a positive correlation was observed between methods (r = 0.56; P < 0.05). Lipid depots located in the SS area were utilized to a greater extent than the more centrally located depots. This is the first study to show significant use of IMTG as a substrate source during exercise in healthy males via the concurrent implementation of three major methodologies. In addition, this study shows differences in resting subcellular intramyocellular lipid deposit distribution and in the subsequent net use of these deposits during exercise.  相似文献   
60.
Glucose metabolism is altered in long-lived people and mice. Although it is clear that there is an association between altered glucose metabolism and longevity, it is not known whether this link is causal or not. Our current hypothesis is that decreased fasting glucose utilization may increase longevity by reducing oxygen radical production, a potential cause of aging. We observed that whole body fasting glucose utilization was lower in the Snell dwarf, a long-lived mutant mouse. Whole body fasting glucose utilization may be reduced by a decrease in the production of circulating glucose. Our isotope labeling analysis indicated both gluconeogenesis and glycogenolysis were suppressed in Snell dwarfs. Elevated circulating adiponectin may contribute to the reduction of glucose production in Snell dwarfs. Adiponectin lowered the appearance of glucose in the media over hepatoma cells by suppressing gluconeogenesis and glycogenolysis. The suppression of glucose production by adiponectin in vitro depended on AMP-activated protein kinase, a cell mediator of fatty acid oxidation. Elevated fatty acid oxidation was indicated in Snell dwarfs by increased utilization of circulating oleic acid, reduced intracellular triglyceride content, and increased phosphorylation of acetyl-CoA carboxylase. Finally, protein carbonyl content, a marker of oxygen radical damage, was decreased in Snell dwarfs. The correlation between high glucose utilization and elevated oxygen radical production was also observed in vitro by altering the concentrations of glucose and fatty acids in the media or pharmacologic inhibition of glucose and fatty acid oxidation with 4-hydroxycyanocinnamic acid and etomoxir, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号